
Package: hellmer (via r-universe)
March 14, 2025

Title Batch Processing for Chat Models

Version 0.1.1

Description Batch processing framework for 'ellmer' chat model
interactions. Enables sequential and parallel processing of
chat completions. Core capabilities include error handling with
backoff, state persistence, progress tracking, and retry
management. Parallel processing is implemented via the 'future'
framework. Additional features include structured data
extraction, tool integration, timeout handling, verbosity
control, and sound notifications. Includes methods for
returning chat texts, chat objects, progress status, and
structured data.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

Imports beepr, cli, future, furrr, jsonlite, parallel, purrr, R.utils,
S7, utils

Depends ellmer

URL https://dylanpieper.github.io/hellmer/

Config/pak/sysreqs libssl-dev

Repository https://dylanpieper.r-universe.dev

RemoteUrl https://github.com/dylanpieper/hellmer

RemoteRef HEAD

RemoteSha 715d2fe1969f4f4996dc6421031acf3f1f800c82

1

https://dylanpieper.github.io/hellmer/

2 batch

Contents
batch . 2
chats . 4
chat_future . 4
chat_sequential . 6
progress . 8
texts . 8

Index 10

batch Batch class for managing chat processing

Description

Batch class for managing chat processing

Usage

batch(
prompts = list(),
responses = list(),
completed = integer(0),
state_path = character(0),
type_spec = NULL,
judgements = integer(0),
echo = character(0),
input_type = character(0),
max_retries = integer(0),
initial_delay = integer(0),
max_delay = integer(0),
backoff_factor = integer(0),
chunk_size = integer(0),
workers = integer(0),
plan = character(0),
state = list()

)

Arguments

prompts List of prompts to process

responses List to store responses

completed Integer indicating number of completed prompts

state_path Path to save state file

type_spec Type specification for structured data extraction

batch 3

judgements Number of judgements in a batch_judge() workflow (1 = initial extract + 1
judgement, 2 = initial extract + 2 judgements, etc.)

echo Level of output to display ("none", "text", "all")

input_type Type of input ("vector" or "list")

max_retries Maximum number of retry attempts

initial_delay Initial delay before first retry

max_delay Maximum delay between retries

backoff_factor Factor to multiply delay by after each retry

chunk_size Size of chunks for parallel processing

workers Number of parallel workers

plan Parallel backend plan

state Internal state tracking

Value

Returns an S7 class object of class "batch" that represents a collection of prompts and their responses
from chat models. The object contains all input parameters as properties and provides methods for:

• Extracting text responses via texts() (includes structured data when a type specification is
provided)

• Accessing full chat objects via chats()

• Tracking processing progress via progress()

The batch object manages prompt processing, tracks completion status, and handles retries for failed
requests.

Examples

Create a chat processor
chat <- chat_sequential(chat_openai())

Process a batch of prompts
batch <- chat$batch(list(

"What is R?",
"Explain base R versus tidyverse",
"Explain vectors, lists, and data frames"

))

Check the progress if interrupted
batch$progress()

Return the responses as a vector or list
batch$texts()

Return the chat objects
batch$chats()

4 chat_future

chats Extract chat objects from a batch result

Description

Extract chat objects from a batch result

Usage

chats(x, ...)

Arguments

x A batch object

... Additional arguments

Value

A list of chat objects

Examples

Create a chat processor
chat <- chat_sequential(chat_openai())

Process a batch of prompts
batch <- chat$batch(list(

"What is R?",
"Explain base R versus tidyverse",
"Explain vectors, lists, and data frames"

))

Return the chat objects
batch$chats()

chat_future Process a batch of prompts in parallel

Description

Processes a batch of chat prompts using parallel workers. Splits prompts into chunks for processing
while maintaining state. For sequential processing, use chat_sequential().

chat_future 5

Usage

chat_future(
chat_model = NULL,
workers = parallel::detectCores(),
plan = "multisession",
chunk_size = NULL,
max_chunk_attempts = 3L,
max_retries = 3L,
initial_delay = 20,
max_delay = 80,
backoff_factor = 2,
timeout = 60,
beep = TRUE,
...

)

Arguments

chat_model ellmer chat model function or object (e.g., ellmer::chat_claude)

workers Number of parallel workers to use (default: number of CPU cores)

plan Processing strategy to use: "multisession" for separate R sessions or "multicore"
for forked processes (default: "multisession")

chunk_size Number of prompts to process in parallel at a time (default: number of prompts
/ 10)

max_chunk_attempts

Maximum number of retry attempts for failed chunks (default: 3L)

max_retries Maximum number of retry attempts per prompt (default: 3L)

initial_delay Initial delay in seconds before first retry (default: 20)

max_delay Maximum delay in seconds between retries (default: 80)

backoff_factor Factor to multiply delay by after each retry (default: 2)

timeout Maximum time in seconds to wait for each prompt response (default: 2)

beep Logical to play a sound on batch completion, interruption, and error (default:
TRUE)

... Additional arguments passed to the underlying chat model (e.g., system_prompt)

Value

A batch object (S7 class) containing:

• prompts: Original input prompts

• responses: Raw response data for completed prompts

• completed: Number of successfully processed prompts

• state_path: Path where batch state is saved

• type_spec: Type specification used for structured data

6 chat_sequential

• texts: Function to extract text responses (includes structured data when a type specification is
provided)

• chats: Function to extract chat objects

• progress: Function to get processing status

Examples

Create a parallel chat processor
chat <- chat_future(chat_openai, system_prompt = "Reply concisely, one sentence")

Process a batch of prompts in parallel
batch <- chat$batch(list(

"What is R?",
"Explain base R versus tidyverse",
"Explain vectors, lists, and data frames"

))

Check the progress if interrupted
batch$progress()

Return the responses
batch$texts()

Return the chat objects
batch$chats()

chat_sequential Process a batch of prompts in sequence

Description

Processes a batch of chat prompts one at a time in sequential order. Maintains state between runs
and can resume interrupted processing. For parallel processing, use chat_future().

Usage

chat_sequential(
chat_model = NULL,
echo = "none",
max_retries = 3L,
initial_delay = 20,
max_delay = 80,
backoff_factor = 2,
timeout = 60,
beep = TRUE,
...

)

chat_sequential 7

Arguments

chat_model ellmer chat model function or object (e.g., ellmer::chat_claude)
echo Level of output to display: "none" for silent operation, "text" for response text

only, or "all" for full interaction (default: "none")
max_retries Maximum number of retry attempts per prompt (default: 3L)
initial_delay Initial delay in seconds before first retry (default: 20)
max_delay Maximum delay in seconds between retries (default: 80)
backoff_factor Factor to multiply delay by after each retry (default: 2)
timeout Maximum time in seconds to wait for each prompt response (default: 60)
beep Logical to play a sound on batch completion, interruption, and error (default:

TRUE)
... Additional arguments passed to the underlying chat model (e.g., system_prompt)

Value

A batch object (S7 class) containing

• prompts: Original input prompts
• responses: Raw response data for completed prompts
• completed: Number of successfully processed prompts
• state_path: Path where batch state is saved
• type_spec: Type specification used for structured data
• texts: Function to extract text responses (includes structured data when a type specification is

provided)
• chats: Function to extract chat objects
• progress: Function to get processing status

Examples

Create a sequential chat processor
chat <- chat_sequential(chat_openai, system_prompt = "Reply concisely, one sentence")

Process a batch of prompts in sequence
batch <- chat$batch(list(

"What is R?",
"Explain base R versus tidyverse",
"Explain vectors, lists, and data frames"

))

Check the progress if interrupted
batch$progress()

Return the responses
batch$texts()

Return the chat objects
batch$chats()

8 texts

progress Get progress information from a batch result

Description

Get progress information from a batch result

Usage

progress(x, ...)

Arguments

x A batch object

... Additional arguments passed to methods

Value

A list containing progress details

Examples

Create a chat processor
chat <- chat_sequential(chat_openai())

Process a batch of prompts
batch <- chat$batch(list(

"What is R?",
"Explain base R versus tidyverse",
"Explain vectors, lists, and data frames"

))

Check the progress
batch$progress()

texts Extract texts or structured data from a batch result

Description

Extract texts or structured data from a batch result

Usage

texts(x, ...)

texts 9

Arguments

x A batch object

... Additional arguments passed to methods

Value

A character vector or list of text responses. If a type specification was provided to the batch,
structured data objects will be returned instead.

Examples

Create a chat processor
chat <- chat_sequential(chat_openai())

Process a batch of prompts
batch <- chat$batch(list(

"What is R?",
"Explain base R versus tidyverse",
"Explain vectors, lists, and data frames"

))

Extract text responses
batch$texts()

Index

batch, 2

chat_future, 4
chat_sequential, 6
chats, 4

progress, 8

texts, 8

10

	batch
	chats
	chat_future
	chat_sequential
	progress
	texts
	Index

